How DNA May Shape the Post-Silicon Era

Consider the days when virtually all the available information in the world was stored on paper and ink, organized in libraries. Research took weeks and months because finding the necessary information in the absence of a search engine was dependent on sifting through volumes of printed indexes. It is unthinkable how long it would have taken to discover the many advances of technology without the decreasing size and increasing storage power of the computer.

In the early days of the PC, 10 megabytes of hard disk storage cost about $1,000, color monitors would set you back about $500, and external storage devices were 5.25 inch floppy disk drives. Today you can get terabytes of storage of that $1000 price, and any display device that is not color is considered to be antiquated.

New research has opened the door to creating synthetic DNA stands that are able to store incredible amounts of data, make it searchable, and then being able to retrieve any part of a text or the entire book flawlessly. One example is a scientist was able to store 79,000,000,000 copies of a book on a single stand of DNA. Now it is hard to imagine why anyone would want to store 79 billion copies of a book but it unlocks the potential of the future of DNA and computing.

The ability of storing data on external storage media is falling behind the amount of data being generated in today’s digitally frenzied world. Google, for example, stores every YouTube video uploaded to its servers unless specifically deleted by the user. With an average of 100 million uploads every day, the storage problem is obvious, but the future retrieval speeds also need to be considered. The data starved world we live in is about to get even more complicated. Think about the fact that in 2017 there were an estimated 16 trillion gigabytes of storage generated that required storage on external devices.

Beyond the external storage potential of DNA is replacing the binary system of coding with 1s and zeroes to the quantum mechanical potential that exists within these synthetic DNA strands. The speed at which instructions can be executed is significantly faster than today’s electrical signals. Research using DNA actually shows that there is a potential conflict between the two technologies of the current microprocessors and DNA transmission speeds. A significant number of the biotechnology research companies are using nanotechnology to create new drugs and medical solutions that have practical application in the real world.

There are four basic nucleotide bases that make up DNA: adenine (A), guanine (G), thymine (T), and cytosine (C). These four bases have been used as the basis for replacing the binary system 1s and zeroes commonly used by programmers to create our currents software systems. Though the AGTC sequencing may seem to make things more complex and result in reduced speeds, the field of quantum mechanics and string theory will result in faster computing and open up possibilities that have yet to be imagined by science fiction writers.

So the question is, what’s holding up the show? The cost of sequencing a synthetic DNA strand is about one penny. But the cost of creating those synthetic strands runs about $150 each. Remember, here we are talking about sizes that are measured in nanometers. It currently costs millions of dollars just to create enough synthetic DNA just to perform any meaningful research. Microsoft is just one company that is beginning to invest heavily into the potential uses.

When you consider that it took about 30 years for personal computing to go from $10 per megabyte of hard disk storage to the current 1/100 of a cent in today’s world, breaking through the barriers to make DNA external storage the standard is not far away. But the external storage itself in just one problem to be dealt with, as the technology for reading of the data on our personal computing devices lags behind. Miniaturization is great, but it has to be practical for humans to use. Smartphones and tablets can only be so small, which leaves completely eliminating the concept of physical devices and coming up with another type of storage and retrieval device that will not require the use of human hands. As is common with the scientific method, for every solution there are 10 new problems created.


Add Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

rapper busta rhymes reading speech
How Busta Rhymes Achieved a Net Worth of $65 Million
10 Things You Didn't Know About Rob Glaser
10 Things You Didn’t Know About Rob Glaser
How Steve Kroft Achieved a Net Worth of $17 Million
10 Things You Didn’t Know about EMCOR Group CEO Anthony Guzzi
Chase United Mileage Explorer
20 Benefits of the Chase United Explorer Credit Card
Brookfield Infrastructure Partners
Why Brookfield Infrastructure Partners is a Solid Dividend Stock
Welltower
Why Welltower (WELL) is a Solid Dividend Stock for the Next 20 Years
Chase Slate
20 Benefits of Having a Chase Slate Card
machine translation
How Close are We To Getting Machine Translation Perfected?
Flexible Electronics Technology
The Future is Bright for Flexible Electronics
Productivity 101: Why you Should Consider a Time Tracking Tool
Biosphere 2
Closed Ecological Systems: Can They Save the Future?
Exterior of Old Homestead Steakhouse NYC
Why The Old Homestead Steakhouse is One of NYC’s Finest Steakhouses
10 Things You Didn’t Know about the Staten Island Ferry
10 Reasons To Stay at The Ritz Carlton Amelia Island
National Museum of the American Indian NYC location
10 Reasons to Visit The National Museum of the American Indian NYC
1964 Ferrari 275 GTB-C Speciale
A Closer Look at the 1964 Ferrari 275 GTB-C Speciale
1961 Ferrari 250 GT LWB California Spider
A Closer Look at the $18.5 Million 1961 Ferrari 250 GT LWB California Spider
1954 Ferrari 375-Plus
A Closer Look at the $18.3 Million 1954 Ferrari 375-Plus
1964 Ferrari 250 LM Rear
Is the 1964 Ferrari 250 LM Really Worth $18.26 Million?
A Closer Look at the $4.6 Million Louis Moinet Meteoris
A Closer Look at the $4 Million Patek Philippe Platinum World Time
A Closer Look at the $3.3 Million Piaget Emperador Temple
A Closer Look at The Patek Philippe 1953 Heures Universelles Ref 2523