How Har Gobind Khorana Changed Biochemistry Forever

When thinking of those who have made significant progress in science and medicine, there are probably many names that come to mind. Unless you are particularly knowledgeable in these areas or work in these fields, one name that you might not immediately think of is Har Gobind Khorana. Thanks to this amazing man, significant progress was made in research relating to biochemistry that changed biochemistry forever.

Har Gobind Khorana was born in British India, which is current day Pakistan, on January 9, 1922. His family was poor, and he was one of five children. Despite their lack of money, Khorana’s parents were determined that their children should have an education and they became one of the few literate families in their village.

With the assistance of scholarships, he went on to study at the Punjab University in Lahore, where he achieved first a bachelor’s degree followed by a Master of Science degree. This was only possible thanks to the assistance of scholarships. When he moved to England in 1945m He studied organic chemistry at the University of Liverpool. And it was there that he received his Ph.D. He continued as a student as he moved to Switzerland to pursue post-doctoral studies. He landed an unpaid position in Switzerland to work on alkaloid chemistry.

Khorana returned briefly to his home country but was unable to find a job. This led him to return to England, where he lived in Cambridge between 1950 and 1952. During this period, he was working on a fellowship studying nucleotides and peptides with George Wallace Kenner.

In 1952, he accepted a position at the University of British Columbia to work for the British Columbia Research Council. Therefore, he and his family moved to Vancouver, British Columbia, that year. Khorana’s new employers gave him the freedom to research whatever he wanted, and he chose to study nucleic acids and biomolecules.

His next career move was to the University of Wisconsin at Madison. He held the position of the co-director of enzyme research and then became a professor of biochemistry. During this time, he worked on synthesizing functional genes and deciphering the mechanisms of RNA codes in the synthesis of proteins. This was his most significant work so far and it was his research from this period of his life that later led to him sharing a Nobel Prize.

Specifically, his Nobel Prize was for his work on interpreting genetic codes and their functions in protein synthesis. It was considered an important contribution to the field as he had built different RNA chains using enzymes and producing proteins. Khorana delivered his Nobel lecture on December 12, 1968, and was then acknowledged as the first scientist to chemically synthesize oligonucleotides.

He later extended his research to DNA polymers and used non-aqueous chemistry. His research was the first step to the invention of polymerase chain reaction and was a major leap towards using synthetic genes to sequence, clone, and engineer new animals and plants. It has become an important part of understanding DNA in human genes and analyzing DNA in research into gene-based diseases and human evolution. DNA analysis has become one of the most important fields of science in recent decades and none of this would have been possible without the work of Har Gobind Khorana.

Although Khorana’s most significant achievement is sharing a Nobel Prize, he has received many other accolades, awards, and honors for his work. In 1978., he was elected as the Foreign Member of the Royal Society. In 2007, the Khorana Program was formulated. This was a joint venture between the University of Wisconsin, the Indo-US Science and Technology Forum, and the Government of India. This program’s mission is to support collaboration and to create a community between scientists, entrepreneurs, and industrialist from both India and the United States. Khorana was honored at the 2009 Steenbock Symposium in Wisconsin, which was hosted by the Khorana program.

In his personal life, Har Gobind Khorana was married to Esther Elizabeth Sibler from 1952 and the couple had two daughters and a son together. Khorana died in Massachusetts on November 9, 2011. His wife and one of his daughters had already died before him. Even after his death, his work is considered some of the most significant research not only in the field of biochemistry, but also in many other fields of science, technology, and engineering.

Add Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Zsolt Felcsuti
The 10 Richest People in Hungary
20 Things You Didn’t Know About Aprea Therapeutics
Leon Black
20 Things You Didn’t Know About Leon Black
Brian Higgins
20 Things You Didn’t Know About Brian Higgins
The Top 10 Mutual Funds by 10 Year Performance
Navy Federal Credit Card
The 10 Best Credit Cards for Military Members
The 10 Most Valuable Cryptocurrencies in the World
The 10 Best Credit Cards for Small Businesses
solar panels
The Five Best Solar Panel Companies Based on Efficiency
Why Are AirPods So Expensive? Here’s The Answer
Computer Virus
The 10 Worst Computer Viruses of All-Time
printer ink
Why is Printer Ink So Expensive? Here’s the Answer
Florida U.S. 1
The 20 Worst Roads in America in 2019
The Top 10 Golf Courses in Orlando, Florida
Why The Private Suite at LAX is the Ultimate Airport Experience
The Top 10 Golf Courses in Scottsdale, Arizona
The Porsche 911 Carrera RS
10 of the Best Porsche Carrera Models of All Time
Ferrari Testarossa
10 Best Ferrari Testarossa Models of All-Time
1982 Porsche 944
The Five Best Porsche 944 Models of All-Time
Ferrari Portofino
10 Things You’ll Love About the Ferrari Portofino
A Closer Look at the Hublot Bigger Bang
IWC Big Pilot's Watch Constant-Force Tourbillon Edition Le Petit Prince
A Closer Look at the IWC Big Pilot’s Watch Constant-Force Tourbillon Edition Le Petit Prince
A Closer Look at the Jaeger-LeCoultre Master Ultra Thin Tourbillon
Time Traveling: The Hublot Classic Fusion Zirconium