Rolls-Royce Is Building Insect-Like Robots to Fix Plane Engines

You’ve probably heard that robots are being used to do more and more unique things. After all, science fiction has been writing stories about these types of occurrences for years now. A lot of people envision a future where robots are doing practically everything and they’re wondering what humans will actually be doing when that future becomes a reality. What you might not realize is that to a certain extent, that future is already here. Rest assured, it’s not the robot revolution that so many people have talked about and it doesn’t necessarily mean that people are going to be placed out of work en masse. However, one of the more unique innovations when it comes to designing and building robots has been taking place for quite some time and it’s the brainchild of Rolls-Royce.

They’ve been working to develop extremely small robots, about the size of a large insect. The whole point behind it is to have them work to diagnose problems with and then repair aircraft engines. By sending these insect-sized robots into aircraft engines, it’s possible to see areas that no human could ever get to without fully disassembling the engine itself. As a result, it’s easier to diagnose problems and then provide solutions without taking as much time in order to get the job done. All of this translates to less down time for the aircraft and less money lost by airlines, military organizations and virtually anyone else that utilizes the technology.

It’s important to know that all of the kinks haven’t been worked out just yet. While the company has built these robots and they’ve been testing them, they haven’t been fully implemented into daily use to date. It’s imperative that several fail-safes be incorporated into the design so that one of the robots isn’t inadvertently left in an aircraft engine. This could cause a tremendous amount of damage when the aircraft starts up and if it manages to make it through take off, it could potentially put the flight in jeopardy. Therefore, a lot of testing is required in order to ensure that the company gets everything right.

So far, the results have been extremely promising. For those individuals that fear that aircraft mechanics will be put out of work thanks to this technology, it’s important to know that it’s more like shifting job functions in order to accomplish the work that needs to be done with the help of these robots. Remember, the robots themselves are not capable of carrying out extensive repairs. Instead, they can be used to troubleshoot a problem and then send that information back. If the engine requires being disassembled and repaired, it cuts down on the amount of time needed because extensive troubleshooting measures don’t have to be taken with a trial-and-error approach. Therefore, experienced aircraft mechanics are most definitely needed. It merely speed the process along.

Anyone that’s ever crawled around inside an aircraft engine would probably tell you that they would much rather have these robots do the job as opposed to doing it themselves. Even when the engine has been pulled from the aircraft itself, this is a daunting task and it’s not the most comfortable thing in the world, to say the least. In the rare case that the engine is still mounted on the aircraft, the very idea of doing this is downright frightening.

The design and development of these robots likely indicates how things might be done several years from now. Obviously, this is one of the more unique developments for robot technology and it has all kinds of potential when you really stop and think about it. It’s not that much different than finding a way to use a computer to decode what’s going on with your car when the check engine light comes on. It also helps that these robots can send back pictures so people can see any physical damage that might have occurred to the engine in real time.

Overall, this is something that is definitely worth keeping your eyes on. It might be the way that virtually all aircraft are repaired in the not-too-distant future. It certainly has lots of promise and there’s no doubt that the technology will ultimately be used for other things as well.


Add Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

JD Byrider
How JD Byrider Became a Leading Auto Giant
George Carlin
20 George Carlin Quotes That Apply to Business
Bob Ross
20 Bob Ross Quotes That Apply to Business
Pat Brown
10 Things You Didn’t Know About Impossible Foods CEO Pat Brown
State of Oregon
How to Apply for Unemployment in Oregon
Outback Steakhouse
Is Bloomin Brands a Solid Long Term Investment?
American Airlines
Is American Airlines Stock A Solid Long Term Investment?
stocks
Is Fabrinet a Solid Long Term Investment?
Ocean Drive
The 20 Best Things to do in Newport, RI For First Timers
Lake Merritt
The 20 Best Things to Do in Oakland, CA for First Timers
The 20 Best Hotels in Tucson, AZ
Riviera Palm Springs
The 20 Best Hotels in Palm Springs
Volvo's Polestar
Volvo’s Polestar May Be the Four-Door Electric Car of the Future
2021 Genesis GV80
10 Things You Didn’t Know About the 2021 Genesis GV80
2021 Hyundai Elantra 2
10 Things You Didn’t Know About the 2021 Hyundai Elantra
2020 Audi Q5 Hybrid
The 10 Most Efficient Small Hybrid SUVs
Orrery Tourbillon REF. 2GGBP.U01A
The 10 Best Graham Watches Money Can Buy
Junghans Meister Pilot Chronscope Watch Black Dial Numerals 0273590.00
The 10 Best Junghans Watches Money Can Buy
10 Things You Didn’t Know about Moller Watches
The Iconic No. 1 by TID
The 20 Best Minimalist Watches for Men
Sting
How Sting Achieved a Net Worth of $400 Million
Brooke Baldwin
How Brooke Baldwin Achieved a Net Worth of $1.5 Million
Sam Elliott
How Sam Elliott Achieved a Net Worth of $12 Million
Jake Tapper
How Jake Tapper Achieved a Net Worth of $10 Million